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COLLAPSE OF A SPHERICAL CAVITY IN A MEDIDq4 

COMPLETELY TRANSPARENT TO VOLUME RADIATION 

Ya. 14. Kazhdan and I. B. Shchenkov UDC 301.17.33.05.07 

When a spherical cavity collapses there develop in the vicinity of the center a 
number of unique features in flow gas dynamic characteristics, which can essentially be 
described by a self-similar solution corresponding to the process under consideration. 

Self-similar solutions for gas dynamic flows upon collapse of a spherical cavity have 
been found using the assumption of flow isoentropiclty [i]. In the present study the flow 
will be considered with presence of radiation losses in the medium, which is completely 
transparent to volume radiation, these losses developing when the gas temperature outside the 
cavity is sufficiently high. It will be assumed that the character of the radiation corre- 
sponds to a braking mechanism of free--free electron transitions, since at sufficiently high 
temperature all atoms of the material are completely ionized. The gas dynamic equations, 
the self-similar solution of which will be obtained below, differ from the classical system 
only in the presence of a term corresponding to radiant losses in the energy equation [2]: 

2 / 2 

Ot + Or = Oo r2peTIl 

( w h e r e  t h e  c o n s t a n t  Qo < 0 ,  a = 2 ,  B = 1 / 2 ) .  N e v e r t h e l e s s  t h i s  a d d i t i o n  s i g n i f i c a n t l y  
c h a n g e s  t h e  c h a r a c t e r  o f  t h e  f l o w :  i t  b e c o m e s  n o n i s o e n t r o p i c ;  t h e  s e l f - s i m i l a r i t y  i n d e x  
i n c r e a s e s  a s  c o m p a r e d  t o  t h e  i n d e x  o b t a i n e d  w i t h o u t  c o n s i d e r a t i o n  o f  r a d i a n t  l o s s e s ,  w h i c h  
intensifies cumulation. The self-similar solution will be determined using the principles 
of [i], but will be significantly more complicated in view of the absence of an adiabatic 
interval in the case under consideration. 

i. Mathematical Formulation of the Problem. In the self-similar solution the equation 
of state for the gas is assumed polytropic: 

p = pc~/x, e = p / [ ( x  - -  l ) p ] ,  T = p / ( R p )  = c'/@r 

Here p is pressure; e is specific internal energy; O is density; T, temperature; c, speed of 
sound; R, universal gas constant; x, polytropy index. 

For collapse of a spherical cavity r and t are the distance from the center of the 
cavity and the time measured from the moment of collapse (t < 0). After transition to dimen- 
sionless variables 

t = to t ,  r = r o t ,  c 2 = r~c~/ fo ,  u = r o u / t  o, p = PoP, P =-  Por~P/ fo ,  

where any two quantities (for example, 0o and to) are arbitrary positive constants with 
appropriate dimensions, and 

~scow. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. i, 
pp. 41-49, January-February, 1989. Original article submitted November 26~ 1987. 
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u (x - -  i )  0 o ] 1 / 9 ( I - ~ )  ~ ( a - ~ ) / = ( 1 - ~ ) . ( ~ - - t ) / ~ ( 1 - P )  
ro = - ( ~  j .o , vo , 

the equations describing gas dynamic processes.in a medium completely transparent to volume 

radiation for the case of spherical symmetry have the form 

pot c ~ Ot + U \--Or c z Or)  + ~-r + -r" = 0 '  

Ou) (i.I) x (au t ap = O, 
7 t ~ +  u ~  - +70-7 

t (ae ~ ac~ (au 2u\ x=-Xp=-~c~(~-=) 
7 + = + - + T) - 

The solution to be found must satisfy the following conditions: 

which is a free surface, 

d r ~ d r =  u, p = O, c 2 = O; 

at the center (r = 0, t > 0) 

"(0,  t) = 0.  

As r + = t h e  p r e s s u r e  a n d  s p e e d  o f  s o u n d  m u s t  b e  f i n i t e .  

The problem posed admits a self-similar solution. 
tions (1.2) and (1.3) permit a group of transforms 

r - -* a r ,  t . - . a h t ,  a--)-al-hu, r p--+a 

=0. 

on the cavity boundary, 

System (i.i) with boundary condi- 

2(t--h)(a-B)--h 
~--I 

P 

( i . 2 )  

for any exponent k. This allows us to seek the self-similar solution in the form 

u = "T ~ v (~), : =-#'~ F (~), p = :(=-~):(~-" I t l [ ' (~-~)-": (=- 'p  (D (~ = ~or-kt)  �9 

( 1 . 3 )  

(1.4) 

Substituting Eq. 
for the self-similar representations F(~), U($), and P(~): 

P '  U 2 - -  U 2 (~ --  8) z(t--FkU) u , ~ _ k T ~  + x - - Y - +  ~_~  =0;  

F' (1 - -  k U )  ~- ~ - -  (•  - -  1) k U ' ~  + (3•  - -  t )  U + •  ~-c= - -  2 = O. 

(1.4) in Eq. (i.I), we obtain a system of ordinary differential equations 

(l.5a) 

(1.5b)  

(1.5c) 

The boundary conditions for this system follow from Eqs. (1.2), (].3). In view of the self- 
similarity, the cavity boundary corresponds to the line ~ = const. Without destroying 
generality, by an appropriate choice of ~o we may make ~ = i. Along the line ~ = const dr/ 
dt = r/kt, so it follows from Eq. (1.2) that 

= i: u(t) = i/k, P = 0, F = 0. (1.6 

( r  = O, t > O) c o r r e s p o n d s  t o  t h e  l i n e  ~ = - - = ,  a n d  i n  v i e w  o f  E q s .  ( 1 . 3 ) ,  The center 
(1.4) 

IU(D$-~/hl ~ 0 as ~=~ - -oo.  (1.7 

The focus section (t = 0, r > 0) corresponds to the line ~ = 0, along which the pres- 
sure, velocity, and speed of sound are functions of the radius alone. Therefore as ~ ~ 0 
the solution has the asymptote 

p($) ,.., ~[t+2c=-S)l/(=-1), U($) ~ ~, F(~) ,-, ~2, (i. 8) 

whence as r § ~ in view of the requirement of finiteness of the functions p(r, t), u(r, t), 
c2(r, t) there follows the inequality k ~ I. 

Thus the problem under consideration reduces to finding the self-similarity index k 
(k ~ i) at which a solution of system (1.5) satisfying conditions (1.6)-(1.9) exists, and 
obtaining that solution. 
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2. 
tions in the phase space (U, F, P) 

Determination of the Self-Similarity Index k. We write system (1.5) as two equa- 

and the quadratures 

d___F = F Ix (1 - -  kU) 2 - -  k2F] b + (x - -  1) kl ( t  - -  kU) a + kdFI 
dV (i - -  kU) [(1 - -  kU) a + k (b + d) F] * 

dP D •  
~ '  = -  (v--z-v5 ~7-7"i-b u ~; ~ 

dU a (1 - -  kU) + k (b -r d) F 

~ = z [kSF - -  (t - -  kU)2I - "  

Here 

( 2 . 1 )  

(2.2) 

a = x ( U  2 - -  U) ,  b = (3x  - -  t ) U  5= • --2 
( +  for  t < 0 ,  - -  f or  t > 0 ) ,  

d =  3 = - - 2 ~ - - i  U 3 - - 2 ~  
~ - - 1  ~--I" 

(2.3) 

The initial data of Eq. (1.6) (6 = i) define the singular point A of system (2.1). The 
nontrivial solution departing from point A corresponds to the asymptote 

F = f o  (1 - -  kU) ,  P = Po( l  - -  kU)  (cx-t~)/(a-t) 

x (k - -  t) (a -- 1) 

F~ = k z [3= - -  21~ - -  i - -  (3 - -  2fi) kl ' ( 2 . 4 )  

t [• i ],/(=-x) ). 
Po = ~- " ( ~  ~ + T + 2 F(o ~-~) / (=- ' )  

According to Eqs. (2.2) and (2.4) as ~ + 1 

1 ( 1 - -  ~-}- k (3 - -  2~) 3z ) 
U=T + U o ( t - ~ )  U o =  (=-- f i )  k --T <0" (2.5) 

Thus on the free surface p, 0, T and the entropy function S = pp-x vanish. As ~ chan- 
ges from i to 0 there must exist a value ~x(O < ~x < I), such that 

R = k2f -- (I -- kU) ~ = 0. (2.6) 

For 0 < i -- E < e (e being sufficiently small) according to Eqs. (2.4) and (2.5), R > O, 
and at ~ = O, according to Eq. (1.8), R < 0. For the dependence of the gas dynamic quanti- 
ties upon ~ to be unique it is necessary that at ~ = ~i 

a ( l  - -  k U )  - -  k(b + d ) f  = O. ( 2 . 7 )  

It then follows from Eqs. (2.6) and (2.7) that the numerators of the right sides of system 
(2.1) vanish. The line ~ = ~i in the plane (r, t) corresponds to the characteristic arriv- 
ing at the center at the moment of focusing. 

The equation of this characteristic and the relationships along it have the form 

dr I dp ~ du 2xu ~a--tpa--lr 
d t  p d t  c d t  r + " 

H e n c e ,  a l o n g  t h e  l i n e  5 = c o n s t ,  w h i c h  i s  a c h a r a c t e r i s t i c ,  t h e  r e l a t i o n s h i p  r / k t  = u - -  c 

m u s t  b e  s a t i s f i e d ,  o r  i n  s e l f - s i m i l a r  v a r i a b l e s  1 - -  k ( U  - -  / ~  = O, i . e . ,  t h e  e q u a l i t y  
R = 0. After transformation to self-similar variables with consideration of R = 0 the rela- 
tionship along the characteristic transforms to Eq. (2.7), and Eqs. (2.6), (2.7) define the 
singular line of Eq. (2.1), which must intersect the unknown integral curve in phase space 

at the singular point. 

3. Integration in the Vicinity of the Sinsular Point. To eliminate fractional powers 
we introduce the variable 

T = P~-IFP-a. (3.1) 

We then rewrite system (1.8) as 
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d F  F 
d--U = ~ [(X - -  l) k "4- • 

t 

dT T {k [ (a  - -  6) + • (b - -  1)] + x [(6 - -  t) b + (~ - -  t) d] q)}. ( 3 . 2 )  
d-y = t - : - ~  

H e r e  (I) = (t - -  kU) ~ -- k2F ( l - - kU)  a - { - k ( b ~ - d ) F ;  we o b t a i n  a ,  b ,  d f r o m  Eq .  ( 2 . 3 )  w i t h  c o n s i d e r a t i o n  o f  Eq.  

(3.1). The self-similarity index is found from the condition of existence of an integral 
curve departing from point A and intersecting the singular line defined by Eqs. (2.6), (2.7). 

We write the equation of this line in explicit form 

F = t ( t _ k U ) 2 ,  T = x l _ = {  U [ 2 • 2 1 5  + 2 ( u - - ~ , ( k - - l , ~ - k }  
l--kU k(=-- I) " (3.3) 

It follows from numerical calculations that the desired intersection is achieved for a whole 
range of k values at the singular point B, which is a function of k: 

t.06 < k < t,t8. ( 3 .4 )  

The character of the singular point is determined by the roots of the characteristic poly- 
nomial, a general representation of which can be obtained in the following manner. 

Let Uo, Fo, To be the coordinates of the singular point. With the replacement of vari- 
ables U = Uo + x, F = Fo + f, T = To + t in the vicinity of the point system (3.2) takes on 
the form 

df alx-+-bl/ dt to q_ tx a l x + b l t  
d---x = ]o "4- ]1 ci x q_ dl ] -i- elt '  d-~ = clx "i- dlt + tit" 

The c o e f f i c i e n t s  a p p e a r i n g  t h e r e i n  a r e  f u n c t i o n s  o f  t h e  s i n g u l a r  p o i n t  c o o r d i n a t e s .  The 
system characteristic polynomial 

/odl + bl/1 - -  ~, e : l  o cl/o + a l / :  

tod 1 + b:t I elt  o -  ~ clt o + alt  1 = 0. ( 3 . 5 )  

d: e I c 1 - -  ~. 

It can easily be seen that one of the roots of polynomial (3.5) is equal to zero. Thus, 
after a corresponding linear replacement of variables the phase space layers into two-dimen- 
sional planes in each of which the pattern of integral curves in the vicinity of the singu- 
lar point is one and the same. The two other roots obtained for a series of k values from 
the range of Eq. (3.4) prove to be of the same sign. Thus, the character of the singular 
point B in the cases considered is a generalized node, and consequently the integral curves 
reach this point in a nonanalytic manner, i.e., a weak discontinuity develops. Since the 
line ~ = ~i, corresponding to point B is a characteristic of the system, a weak discontinu- 
ity is admissible thereon. IIowever in the problem under consideration before the moment of 
collapse this characteristic is in no way physically distinguishable. Therefore in the 
given case the weak discontinuity is not justified, and our goal is to determine the value 
of k at which the passage of the integral curve through B is analytic. 

To distinguish this analytical curve from other ones we will use a procedure from [I]. 
Let %1 and %2 be roots of the characteristic polynomial, I%21 > I%11, by n in the vicinity 
of the point B we have the expansion 

F = F o + F~ (U - -  U o) + . . .  + F~ (U - -  Uo)" + CF (U - -  Uo) 6 + fn+~ (U - -  Uo) T M  + . . . .  
( 3 . 6 )  

T = T  o +  T ~ ( U - U o )  + . . .  + T n ( U - - U o )  n + C T ( U - U o )  6 +  T . + , ( U - U o )  ~ + : +  . . . .  

w h e r e  n < ~ = X2/X~ < n + 1 ;  CF i s  a n  a r b i t r a r y  n u m b e r ;  C T i s  a f u n c t i o n  o f  CF. The  a n g u l a r  
coefficients of the tangents to the integral curves at point B can have two values: 

F I = k 2 D . t - C M - - L  V ( k 2 D + C M - - L )  "z LC- -2DV o 
2 M  -I-  " 2 M  q -  M ' 

(3.7) 
A D  - -  B C  + BF 1 

T I =  D 

Here 
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UVo(2V o - -  
L = a o +  k2 

Ct--1 ;'2 
x I o B T O 

M = 2 ( = - -  ~) Vo - -  k (b~ + do) + k2 D - - ,  A - - -~o  I x ( t - -  [~) + [~--  a l ,  

(x -- t) Fob o 
B = V~ • [(t - -  [3) b o - -  ( a  - -  t) do], D - -  kV ~ (3.s) 

ao = + 2 

3 x  - -  i bo = - - - - f -  (Vo - -  t) + •  o + 2, do = 3a - -  2p - -  1 (V ~ _ t) + 3 - 2IS ( o f -  i) k "E"i-T-t '  V o = i - - k U ~  

The desired integral curve belongs to the sheaf of curves which enter the node with a common 
tangent, the angular coefficient of which can be found from Eqs. (3.7), (3.8) with a plus 
sign before the radical. The coefficients F k and T k for k _> 2 are determined uniquely as 
the solution of a system of linear equations obtained after substituting expansion (3.6) in 
system (3.2). We perform the replacement 

f - - f  o - F i x -  . . .  - - F n x  n 
- -  Fn+t ,  ~/1 = z n + l  

( 3 . 9 )  
T - -  T O - -  T l x  - -  . . .  - -  T n x  n - -  T n a .  l .  

Y2 ---- x,~+l 

It is obvious that for all curves of the sheaf which have nonzero C F and C T at x = 0 the 
functions y, and y= increase without limit. According to the Briot--Bouquet theorem, within 
the sheaf of integral curves entering the node and having a common tangent at that point 
there must be one analytical curve (or an infinite number for a dicritical node) to which 
there correspond CF and C T values of zero. Thus for the desired analytical curve at x = 0 
the functions y~ and y2 vanish, while 

[ dv2l = Tn+: .  (3 10)  d y ,  x - o  = F n + 2 ,  d x  }x-o 

Thus, the procedure for calculating k reduces to the following operations. For a given 
k from the interval of Eq. (3.4) we find the point of intersection B of the integral curve 
exiting from point A in the direction of Eq. (2.4) with singular line Eq. (3.3). In the 

vicinity of B the coefficients of the expansions Ti and Fi are determined, in particular, 
that value of n for which n < ~ < n + i. Performing the replacement of Eq. (3.9) in Eq. 
(3.2), we find the integral curve exiting from the point x = 0, y, = 0, y2 = 0 in the 
direction of Eq. (3.10). The value of k will be the desired one if at x = i/k -- Uo (the 
x-value corresponding to point A), according to Eq. (3.9), F = 0, T = Po~-XFo ~-~, where Po 
and Fo are defined by Eq. (2.4), i.e., by the specified initial data at point A. Calcula- 
tion of the coefficients of the expansions T i and Fi and transition to the functions yl and 
y2 for n > i requires cumbersome computations, which were performed on a computer using the 
SANTRA symbol-analytic transform system [3]. 

After the replacement of Eq. (3.9) system (3.2) takes on the form 

; dYi Pl (3. ii) 
-~- = z'a' 

where 

9 
E t ~ .  x i  

h--3  

7 
n = ~ (L~ + i ~ v ,  + N~V, + qhV,V,) ~h; A~ = 0, D'~ = G~ = 0 (k < 4); 

h--1  

E ~ = 0  (k<7) ;  M ~ = N ~ = 0  (k~<2); O k = 0  (k~<5). 

The desired k value, corresponding to analytical passage of the integral curve through the 
point B at a = 2, ~ = 1/2, ~ = 5/3 is equal to 1.090853, and at this point U B = 0.849530, 
F B = 0.00451371, T B = 0.103991. We note that in the region k = 1.090853 6~,2 , therefore 
in Eq. (3.9) n = 2 . 
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4. Passage of the Integral Curve through the Point Correspondin$ to the Focus Section. 
Having defined k, we continue integration of system (3.11), insuring analytical departure 
from the node B, from the point B to the point O, at'which U = 0. Upon approach to the 
point O we have the asymptote 

f ~ , f o  U2, T ~ T o U .  (4.1) 

It follows from an equation corresponding to quadrature (2.2) that the point of the phase 
space (U = 0, F ffi 0, T = O) corresponds to the value ~ = 0, i.e., the focusing section t = 0. 
According to asymptote (4.1) and the definition of T we find that P ~U [z+2(a-~)]/(a:1) , and 
from quadrature (2.2), U % $. Thus, with consideration of Eq. (1.4) the distribution of the 
gas dynamic functions in the focus section t = 0 appears as: u % r l-k, c 2 % r 2(I-k) , 

rt2(~-~x-k) -ll/(~x) Upon continuing the integration of system (3.2) (t > 0, ~ < 0) the 
P U' , F ' i  , T '  , , U ( ~ ) ,  F ( ~ ) ,  T(~)  d e r i v a t i v e s  (~) E) (~) become i n f i n i t e  a t  some v a l u e  of  ~* i . e .  
c e a s e  b e i n g  u n a m b i g u o u s  f u n c t i o n s  o f  ~. T h i s  i n d i c a t e s  t h a t  no c o n t i n u o u s  s e l f - s i m i l a r  s o l u -  
t i o n  e x i s t s  j o i n i n g  t h e  p o i n t  O c o r r e s p o n d i n g  t o  t h e  f o c u s  s e c t i o n  to  t h e  p o i n t  C ( r  = 0 ,  
t > O) c o r r e s p o n d i n g  t o  t h e  c e n t e r ,  i . e . ,  a s h o c k  wave r e f l e c t e d  f rom t h e  c e n t e r  d e v e l o p s ,  
w h i c h  one  wou ld  e x p e c t  f rom p h y s i c a l  c o n s i d e r a t i o n s .  

5.  S t u d y  o f  t h e  S o l u t i o n  i n  t h e  V i c i n i t y  o f  t h e  C e n t e r  ( r  = 0 ,  t > 0 ) .  At t h e  c e n t e r  
( r  = 0 ,  t > 0) t h e  v e l o c i t y  u ( 0 ,  t )  = 0 ,  and  t h e  p r e s s u r e  p ( 0 ,  t )  a nd  s p e e d  of  s o u n d  c ( 0 ,  t )  
mus t  b e  f i n i t e  f u n c t i o n s  of  t h e  t i m e  t .  For  s e l f - s i m i l a r  r e p r e s e n t a t i o n s  t h e  b o u n d a r y  c o n -  
d i t i o n s  a r e :  

F(~) ,-, I~l '1~, ( 5 . 1 )  

T(D -~  r0 = eonst, g -~  -oo. 

and by definition 

These conditions are satisfied only by the final value U(~) + Uo(O < Uo < ~). 

(5.2) 

We assume that U(~) % [~IY. Then in light of Eq. (4.1) from Eq. (1.5c) we have for 
{2 (~--~)2) 3 ~ - - 2 ~ ' I  

7 >0 ([U(~)l-~~176 --k~--'i)-k --kT+ ~--I = 0, hence, y = 3/k, which contradicts 

the condition IU(~)~-I/kl < =. We then assume that y < 0 (U(~)-~ 0), hence (2(~--~)=_I 2)~-- 

3--2~----0 and consequently, k -- 2(1 -- ~)/(3 -- 2B) < i, which contradicts k > i. 
a - - i  

Thus the value of Uo must be finite and is found by substitution of Eq. (5.1) and U = Uo 
in Eq. (l.5a): U0= [(3 -- 2~)k + 2(~ --1) ]#{a --1) > 0 We define the value of To by substitu- 

ting Uo and Eqs. (5.1), (5.2) in Eq. (1.5c): To = ~I-=[2/k + (3• i)U0"--2]> 0 Consequent- 
q u e n t l y ,  as  ~..-+ - - o o  U.--+ Uo, T.--+ To, F--+ Fo~ ~/k. 

I t  i s  o b v i o u s  t h a t  t h e  b e h a v i o r  of  t h e  i n t e g r a l  c u r v e s  i n  t h e  v i c i n i t y  o f  t h i s  p o i n t  
c an  be  s t u d i e d  c o n v e n i e n t l y  by  m a k i n g  t h e  s u b s t i t u t i o n  

As a result we have 
/ = i /F,  U =  Uo + x, T =  To . y. 

dy T d - g = ~ { k [ ~ - - P +  • (8 - -1)]  + ~ [(8 - -1 )  c, + ( ~ - -  t) dl] R}, 

d_t = t {(x-  t) k + • 
dx t -- kU 

(5.]) 

(5.4) 

Here  R - -  ( ! - -  kU)2 ! -  ks 
(l -- kU) A l -- kAoz + k (c I + dl) ' 

A0 =2(~-~) A =xl[V~--Uo+(2Uo--l)x+x2]; 

c = co + cl, c0 = 2(U0 - -  l/k), el = (3• - -  t)x - -  za - ly ;  

(3cc - -  2 ~ "  i )  V o - -  (3 - -  2~) 3c~ - -  2~ - -  t 
d ~  a - - t  , d l - -  ~ - - t  x .  
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The point (x = 0, y = 0, f = 0) is a singular point of system (5.4). The roots of the 
characteristic polynomial in the vicinity of the point are determined by the expressions 

~1 ---- --k(~ --[~)• ~. = --2k• ~:) = 31~z, Zo = kTo/(i -- kUe) (for the parameter values used two 
roots are negative and one positive). Thus this point is of the generalized saddle type. 
The integral curves departing from this point either coincide with the saddle separatrix 
corresponding to the direction 

y ~. yox, / ~ fox, ( 5 . 5 )  

5 u [ a  - -  ~ + x (~ - -  t)l  z o 5z. [ 2z  - -  (c~-- ~) uc~-~=o] 
where yo = ~"(~ 1) Zo+2X , /O=To(U~_Uo)|~a(~_l)Zo_F2~|_.. , or belongs to a sheaf of integ- 

ral curves which have an asymptote as x -~ 0 

y .~ y~z + . . . + y ,  x " +  C~xv, [ ~ Cxv 

(V = 2 •  zo = kTol([  -- kUo)).  (5.6) 

For ~ = 2, ~ = ]/2, ~ = 5/3 y = 20/9, consequently n = 2; C is arbitrary, and yx, Y~, C~ 
are found from 

~- p) ~-'~, (% ,+ %) 

(i - ~-uo) [~ ( ~ -  ~) " ~ - ' ~ o  + 3,,] " 

~ ( co '  - U o )  [ 3 ~  ' - ~  ( l  - kUo) - -  ~ (~ - -  i) T o ]  C, = --5. C ~- 

We write the quadrature defining the dependence of U, F, T upon $ in the form 

dx ( t - - k U ) A - - k A o x + k ( c  , + d , )  ( 5 . 7 )  
~ = z [k" - / (i - kU)'l " 

By substituting Eqs. (5.5) and (5.6) in Eq. (5.7) for each of the integral curves we obtain 
the corresponding asymptote for the function x(~) as ~-~--~ : for the saddle separatrix 
x ~ I~; /k, for the integral curve belonging to the sheaf, x ~ l~;-a/kY. In either of these 
cases F ~ [~[ 2/k, i.e., boundary conditions (5.1), (5.2) are satisfied. 

Thus, the functions of time corresponding to the values of the gas dynamic quantities 
at the center can be expressed as 

u(O, t) = O, c2(0, t)= Fot~(1-~)/~, 
p(O, t ) =  Pot[ ~(a-f~)(~-h)-~l/(~-x)k, p(0, t ) =  Rot[~(~-~)(*-a)-al/(~-t~. 

6 .  D e t e r m i n a t i o n  o f  t h e  R e f l e c t e d  Shock Wave F r o n t .  I t  h a s  b e e n  n o t e d  p r e v i o u s l y  t h a t  
a reflected shock wave develops behind the focus section. In view of self similarity the 
reflected shock wave front corresponds to a line ~ = Sf = const, so that the shock wave 
velocity D = r/kt. For self-similar representations of the gas dynamic functions the condi- 
tions on the shock wave front can be rewritten in the form 

t (x - t) L~ + 2F o 
U* ---- k (u + i) L o 

Fl = [• o __ L,) + FolLt /Lo,  ( 6 . 1 )  

T,---- To(F/Fo)~-I(Lo/L1)~-I,  

where Lo = i/k -- Uo$ Lx = i/k -- U:~ the subscript 0 refers to functions ahead of the front, 
and i, to functions behind the front. 

We will now define the shock wave front and the values of the gas dynamic functions 
thereon. For each integral curve departing from the point 0 in the direction ~ < O, i.e., 
at t > O, according to Eq. (6.1) the values of Ux, F~, T, define the curve ~o in the phase 
space. The shock wave front corresponds to the point of intersection of the curve ~o with 
some integral curve departing from the center (r = 0, t > 0) following one of the asymptotes 
Eq. (5.5) or (5.6). One must obviously consider that the variables on this curve can be 
recalculated according to Eq. (5.3). With consideration of the three-dimensionality of the 
phase space it is improbable that the intersection point would lie on the saddle separatrix 
departing from the center (asymptote (5.5)), which was confirmed by calculations. The sheaf 
of integral curves departing from the center given by Eq. (5.6) forms a surface in the phase 
space as C changes (0 < C < ~). The integral curve ~o intersects this surface at a point 
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lying on the curve of the sheaf corresponding to C = 1077. Thus a solution has been com- 
pletely obtained in phase space. The dependence of the self-similar representations of the 
gas dynamic functions U, F, P on the self-similar variable ~ is defined ahead of the shock 

wave front by Eq. (2.2) and behind the front by Eq. (5.7). 

Thus, the reflected shock wave front in the plane (r, t) corresponds to a line ~ = ~f = 
--0.8809676; ahead of the front Uo = --0.579504, Fo = 0.181274, Po = 0.00869383; behind the 
front U: = 0.451876, F: = 0.304523, P~ = 0.0524506. The gas dynamic function distribution 
on t h e  f o c u s  s e c t i o n  i s  a s  f o l l o w s :  u = 0.82318 ~0r l-h, c 2 =  0,t15i96 ~ r  2(1-h), p = 0.0463816 ~ r :~-~k, p = 

0 .671053~r  ~-2k . The c h a n g e  w i t h  ' t i m e  i n  g a s  d y n a m i c  f u n c t i o n s  a t t h e c e n t e r  i s  u ( 0 ,  t ~  = 

O, p(O,t) A I.524038" ~O61~,Wki~h-L c2( O, t ) =  0.00028086 I~o[2/kt ~cz-~)/h, p(0, t ) ~  0.0090~3 I~0l '/~ t i/h-~. 

The a u t h o r s  a r e  d e e p l y  i n d e b t e d  t o  V. S. I m s h e n n i k  f o r  p o s i n g  t h e  p r o b l e m  s t u d i e d  a n d '  
evaluating the results obtained and to M. S. Gavreeva for clerical assistance. 
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BOUNDARY CONDITIONS ON A SHOCK 

WAVE IN A SUPERSONIC FLOW 

V. G. Shcherbak UDC 533.6.011 

The theory in [i, 2] is used extensively in investigations of supersonic viscous gas 
flow around blunt bodies. A two-layer flow model consisting of a viscous shock layer and a 
domain of passage through the compression shock is proposed in these papers on the basis of 
an analysis of plane and axisymmetric supersonic flows around bodies. 

The equations describing the domain of passage through the shock are integrated once 

and the relationships obtained (generalized Rankine--Hugoniot conditions) are used as boun- 
dary conditions on the outer boundary of the viscous shock layer. In contrast to the classi- 
cal Rankine--Hugoniot conditions, the generalized conditions take account of molecular trans- 
port effects in the zone of the compression shock. The question of the influence of viscos- 
ity and heat conductivity on the flow of a homogeneous gas behind a strongly curved shockwave 
was first investigated in [3]. 

When chemical reactions are present in the flow, the problem of flow in a shock layer is 
already, in principle, not separated from the problem of the shockwave structure because of 
the presence of a source term in the mass conservation laws of the separate components. To 
compute it in the generalized Rankine--Hugoniot relationships the problem of the shockwave 
structure must be solved and joined with the solution within the shock layer. Avoiding this 
procedure to close the problem on the viscous shock layer, the chemical reactions within the 
shockwave are neglected by omitting the source term in the boundary conditions. As is shown 
in [4], let us note that the modified Rankine--Hugoniot relationships should be utilized for 
large Reynolds numbers; also sine application of the ordinary Rankine--Hugoniot relationships 
results in a finite error in the general case because of the origination of a source (sink) 
of the chemical component on the boundary. 

The approximate analytic estimates executed in [5] showed that the two-layer model with 
the frozen wave front is justified for air for V~7 km/sec. It is interesting to esti- 
mate numerically the influence of chemical reactions in the shock leading front on the flow 
characteristics. 
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